
Experiences in the Development of a Service-Based	

Scientific Application Framework	

Mark L . Green1, Catherine L. Ruby1, Stephen D. Miller2	

1Tech-X Corporation, Buffalo Office, Systems Integration
Group	

2Oak Ridge National Laboratory, Spallation Neutron Source	

Scientific Application Experiences
Outline

•  Experiences
–  Sustainability

•  Supporting a software project, and its people, over an extended period of time

–  Commonality and Interoperability
•  To what degree technologies and methodologies must be “homogenized” and

where integration approaches can be more effective: i.e. when square pegs must
fit into round holes

–  Flexibility
•  Agile component-based development allowing organic growth in an ever-changing

environment
•  Enabling both user-side and developer-side statistics for a better understanding of the

overall system
•  “Thing build right” versus “Right thing built”

•  Enabling diverse organizations with different technologies to work together in an effective manner

–  Graphical User Interfaces and Service Interfaces
•  Providing intuitive and robust interfaces that are both agile and reusable
•  Facilitating interoperability and sophisticated capabilities through modular, well-defined and standards-based

services.

Scientific Application Experiences
Outline (continued)

•  Show of Hands
•  Systems Integration Approach
•  Questions

Scientists vote with the feet

Sustainability Experiences

•  Providing dedicated funds for long term software projects is
extremely difficult!

–  Can facilities provide 10s of FTEs for application development?
–  Can facilities collaborate at a committed level of 10s FTE over the

long-term?

–  History tells us that this is not sustainable and these large scale
software projects collapse into a very low level maintenance mode
with feature freeze. What will happen with DANSE?

–  Application based closed source or restricted open source are hard to
sustain. GPL vs. BSD?

–  Organic growth is required over the long-term to sustain a software
project which requires buy-in from the user base. Open Science Grid?

–  Infrastructure development is more sustainable than application
development. Amazon, Google, Yahoo, etc.

Commonality and Interoperability
Experiences

•  Should every square peg fit in a round hole? Why should
one size fit all?

•  Loosely coupled components with well-defined interfaces
are required.

–  How do you develop an application that is flexible enough to meet the
needs of a diverse and evolving user base?

–  Stove piped application are common place. Is APS working?
–  Is selling the next new technology going to met these needs? Possibly

if there is a pluggable infrastructure? Best of breed?
–  Is it okay to be different? Are Amazon, Google, and Yahoo identical?

Mashups are enabled by the infrastructures and standards.

Graphical User Interfaces and Service
Interface Experiences

•  Is anyone ever really happy with someone else's user
interface?

–  All components should be coded in their language of choice and
presented through well-defined interfaces.

–  Interfaces lead to well-defined components which lead to flexibility,
sustainability, and code re-use.

–  De-coupling user stove pipe application from forced GUI choices or
technology adoption.

Flexibility Experiences

•  Complex systems are not simplified by making them more
rigid!

–  Does one framework meet the needs of all facilities and applications
now and into the future? How would this be possible?

–  Should you code to a framework? Or do you code around a
framework? To stop this there is only one solution here, multiple
frameworks that better meet the needs of the user base.

–  Multiple frameworks can use standardize interfaces to interoperate.
–  Can systems integration be performed at the framework level with a

flexible infrastructure? Eclipse Rich Client Platform Integrated
Development Environment.

Show of Hands
•  Who is using off-site HPC resources for their applications?

•  Who is using only facility-owned computing resources for
their applications?

•  How many would consider their software development
budget as:

–  too high?
–  sufficient?
–  extremely under funded?

•  Who is delivering their application via web only?

•  Who is delivering their applications by desktop/laptop
installations?

Orbiter Multitier Portal Architecture
(MPA)

•  Framework for
delivering capabilities
to thin- and thick-
clients using the
Orbiter RESTful SOA

•  Flexible and re-usable
architecture for
developing capabilities
for thin web clients
and thick local clients

•  Comprised of four
tiers: Orbiter
Federation, Orbiter
Pilot, Orbiter
Commander, and
Orbiter Collective

Orbiter Federation – Data, Logic, and
Presentation

•  Bridges the gap between instrument data and rich user
interfaces

•  Implemented as fast and secure RESTful services, delivering
diverse capabilities

•  SSL protocol and RSA PKI ensure service request privacy and
integrity

•  Master/slave database replication ensures data integrity
•  Easy-to-use service APIs make capabilities accessible to a wide

range of users and applications
•  Standards-based schema and WSDL define easily reusable

service interfaces

Orbiter Pilot – Web-Accessible Thin
Client

•  Tier II of the Orbiter Multitier Portal Architecture
•  Accessible to users with accounts and internet

access (via a web browser)
•  Build upon the services provided by the Orbiter

SOA infrastructure
•  Rich, dynamic statistics and QoS metrics
•  Live monitoring and information are easily

accessible
•  Virtual File System (VFS) browsing and

download capabilities
•  XCAMS/UCAMS authentication provides role-

based authorization
•  Public and administrative interfaces provide

active control
•  Rich search interface on repository files and

metadata
•  Flexible, integrated, and interactive tables,

charts, and maps
•  Instant online access for Firefox, Safari, Internet

Explorer, and mobile devices

Orbiter Commander – Customizable Client
•  Tier III of the Orbiter Multitier Portal Architecture
•  Rich Client Platform (RCP) desktop applications for accessing

Federation capabilities, run locally on user work stations or personal
computers

•  Suites and modules deliver diverse functionality
•  Customizable interface lets users optimize their workspace
•  Plug-and-play framework allows new modules to be added to the

application seamlessly
•  Rapid multi-threaded download for optimized access to Orbiter VFS

files
•  Integrated help offers on-the-spot support
•  Seamless integration between Federation Services and local desktop

resources
•  Cross-Platform compatibility with Windows, Mac OS X, Linux, AIX, and

HP-UX
•  Build upon the services provided by the Orbiter SOA infrastructure
•  Allows users to run complex simulations or computationally-intensive

tasks on their local machines, relieving QoS concerns on web service
providers

Orbiter Commander – Customizable Client
(continued)

•  Cross-Platform compatibility with Windows, Mac OS X, Linux, AIX, and HP-UX
•  Build upon the services provided by the Orbiter SOA infrastructure
•  Allows users to run complex simulations or computationally-intensive tasks on their

local machines, relieving QoS concerns on web service providers
•  Atomic capabilities are provided as modules that can be installed as needed from a

central module repository
•  The Orbiter RESTful SOA provides robust access to diverse capabilities, such

as:
•  Multi-threaded streaming downloads of repository files	

•  Live status monitoring of the SNS Beam	

•  Slideshows of instrument application screenshots	

•  Direct Orbiter Pilot access	

Orbiter Collective – Module Development
Environment

•  Tier IV of the Orbiter Multitier Portal Architecture
•  Development environment for Commander capabilities

facilitating widespread community adoption and collaboration
•  Eclipse RCP and the flexible Commander framework form the

basis for future developments
•  Well-defined extension points allow new suites and modules to

be rapidly developed and built upon existing resources
•  New Commander capabilities
are easily deployed through
external update sites
•  In-house proprietary applications
and open source third party tools
can seamlessly be integrated to
provide new capabilities

Questions

Thank you for your attention.

